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Abstract

A model problem for two-phase fluid flow and heat transfer with phase change in a porous medium is described.
The model is based on a steam—water mixture in sand. Under certain conditions, a two-phase zone, in which liquid and
vapour coexist, is separated from a region of only vapour by an interface. A numerical method for locating the inter-
face in the one-dimensional, steady-state problem is described. The results from the steady-state computations are used
as benchmarks for the numerical results for the transient problem. It is shown that methods such as front tracking and
the level-set method are not practical for the solution of the transient problem, due to the indeterminate nature of the
interface velocity, in common with similar degenerate diffusion problems. An interface-capturing method, based on a
two-phase mixture formulation, is presented. A finite volume method is developed, and numerical results show evolu-
tion to the correct steady state. Furthermore, similarity solutions are found, and the interface is shown to propagate at
the correct velocity, by way of a numerical convergence study. Numerical results for the two-dimensional problem are
also presented.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Two-phase flow and transport in porous media has attracted much interest in recent years, from researchers
in such diverse fields as microwave heating of foods and biomaterials [16], geothermal energy recovery [20,26],
and fuel cell technology [19,8]. The process of wood drying is examined in detail by Whitaker [25]. Such appli-
cations require mathematical models of two-phase flow and phase change which are amenable to numerical
solution methods.

The location of interfaces between single-phase and two-phase regions is often of primary interest, and an
essential requirement of numerical schemes for the solution of two-phase flow problems is that the interface
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conditions are accurately satisfied in order for the interface to move with the correct velocity. The model prob-
lems we consider in this paper comprise coupled, nonlinear, degenerate parabolic partial differential equations,
which have mathematical features in common with Stefan problems, degenerate diffusion, and other free and
moving boundary problems.

A popular assumption in the literature is that a region containing two-phase fluid in a porous medium is
isothermal, and often a known phase-change temperature is also assumed. Under such assumptions, numerical
computations may be greatly simplified. In [4,6], a model problem for one-dimensional, steady-state flow and
phase change of water in sand is considered, based on the experimental and analytical work by Udell [21]. In
[4,6], a nonisothermal two-phase region model is presented, and it is shown that heat conduction and phase-
change effects are greatest near the interface with a liquid-only region. A numerical algorithm is described for
computing the location of the free boundaries which separate two-phase region from the regions of vapour
and liquid.

The current work concerns methods for capturing the moving interface which separates a vapour/two-
phase interface in a porous medium. A natural extension from the steady-state problem to the transient prob-
lem results in a “separate flow model” [2]. Model problems are formulated in the disjoint domains, which are
separated by the moving interface. For moving boundary problems where the interface velocity is readily com-
puted, the disjoint-domain formulation suggests the use of a front-tracking method [7], in which the interface
velocity and location are explicitly computed at each time step. Front tracking therefore typically requires a
coordinate transformation or re-meshing at each time step. Further, for problems with more than one space
dimension, the interface geometry must be considered. The Level Set Method, which also requires an imple-
mentation of the interface velocity, has been used for phase change in porous media, in the context of oil res-
ervoir simulation [11]. However, the many simplifying assumptions remove the degeneracy in the problem due
to the zero liquid saturation at the interface. In degenerate diffusion problems such as the porous medium
equation, the interface velocity is often given by an indeterminate form [17], which makes both front-tracking
and Level Set methods impractical.

An alternative to classical front tracking is the Residual Velocity Method proposed for the two-phase
Stefan problem in [9]. The idea is to use the front-tracking method, but applied to a steady-state problem,
and using the computed residual in one of the interface conditions as an artificial velocity, in order to track
the interface to the correct steady state. This method avoids the need for implementing an indeterminate
velocity, but it is still essentially a front-tracking method, for which consideration of the interface geometry
still presents a significant computational challenge. Also, only the steady-state solutions have any physical
meaning.

Fixed-domain, front-capturing methods for the phase change in porous media problem appeal. For the
two-phase Stefan problem, the enthalpy method is widely used [1,7]. The problem is reformulated so that a
governing equation is valid over the entire domain, containing the interface. The Stefan condition is implicitly
absorbed into the formulation, rather than having to be explicitly implemented. This idea has been proposed
for phase change in porous media in the fuel cell setting. One method, based on mixture quantities, assumes
that the vapour in the two-phase region is at saturation [23]. Another model penalizes any vapour not at
saturation pressure into condensing at a large rate [8,19]. Both of these methods require the solution of a
fixed-domain problem, from which the interface location can be recovered. Computations are performed
under simplifying assumptions of isothermal conditions, and regularisations which smear out the sharp satu-
ration profile.

In this paper, we present a capturing method based on the mixture formulation in [23]. Temperature var-
iation is allowed in the two-phase region. Also, no regularisation is added to the computational problem, and
instead we carefully follow the ideas in [10] for conservative schemes for degenerate diffusion problems. A fully
implicit, conservative, finite volume scheme is described for capturing the moving interface in the one-dimen-
sional problem. Numerical results show solutions evolving to the correct steady states. Similarity solutions are
found for the coupled model problems, and a numerical convergence study shows that the interface moves
with the correct velocity. The convergence rates found are comparable with standard capturing methods
for prototype scalar problems such as the Stefan problem and the Porous Medium Equation. The method
is then extended to higher dimensions.
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2. The one-dimensional, steady-state problem

In this section, we describe the steady-state model problem of phase change in a sand pack, as presented by
Udell [21]. His experimental results are obtained by partially saturating a sand-filled tube with water, and then
heating from the top, while cooling from the bottom, and measuring temperatures along the height of the
pack. At steady state, the system supports fluid in the pore space in one of a number of configurations, for
example:

(1) Only vapour throughout the entire pack.
(2) A vapour-only zone above a two-phase zone in which both liquid and vapour exist.
(3) A vapour-only zone above a two-phase zone, with a liquid-only zone underneath.

Udell [21] presents experimental results for the three-zone system, where the two-phase zone is identified as
the almost isothermal region between two single-phase regions with linear temperature profiles. He then pre-
sents an analysis of the two-phase zone only, under the assumption that it is isothermal. We can use Udell’s
steady-state two-phase zone model as a starting point, which can then be extended to the free interface prob-
lem for a two or three-zone system. A disjoint-domain computational method for locating the interfaces in a
one-dimensional, steady-state, three-zone (vapour/two-phase/liquid) system is described by Bridge et al [6]. It
is worth noting that their model relaxes the popular assumptions of isothermal two-phase zones and phase
change only at the boundaries, and we wish to keep temperature and condensation rate effects in this work.

Motivated by the fuel cell setting, where regions of complete liquid water saturation do not occur
[3,8,18,19,24], we will concentrate here on a two-zone system which consists of a two-phase zone and a
vapour-only zone. We present a computational method, based on that in [6], to compute the interface location
in such a steady two-zone system. The numerical results obtained from this method will be used as bench-
marks with which we will compare the results from the unsteady computations to be described in later
sections.

2.1. Mathematical formulation of the model problem

In Fig. 1, we show a schematic of the basic setup, as used by Udell [21]. The porous layer is initially sat-
urated with a certain amount of liquid water, then heated from above and cooled from below. A steady state is
realised, with two distinct zones appearing. In the two-phase zone, z € (0, L), liquid and vapour coexist in the
pore space. In this region, the liquid is driven upward by capillary pressure, while the vapour is driven down-
ward by a vapour pressure gradient. In the vapour-only region, z € (L, D), the water vapour is stationary.
A primary goal of the works by Udell [21] and Bridge et al. [6] is to locate the interface z = L. We note that
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Fig. 1. A two-zone system for Udell’s experiment.
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the model presented in [6] assumes a constant vapour density throughout the two-phase and vapour-only
regions. Here, our model allows for variation in density with temperature, but otherwise, we follow [6]. A list
of physical constants and parameters used in our model appears in Table 1.

In order to locate the interface, we consider the saturation s through the porous layer. The saturation is

defined by
__volume of pore space occupied by liquid water

s
volume of pore space

(2.1.1)

Therefore, a liquid-only region (which we do not consider here) has s = 1, a vapour-only region has s = 0, and
a two-phase region of vapour and liquid has 0 < s < 1. In this model, we assume that s is continuous through-
out the porous layer, and that at the interface z = L, we have s — 0" as z — L~. Now, we follow [6] to for-
mulate a model for the saturation s (the liquid volume fraction), and the temperature 7, and their
variations in z, the height up the porous layer. In the two-phase region 0 < z < L, conservation of liquid mass
gives

(pu), =T (21.2)

Here, p is density, u is the superficial Darcy velocity, I' is the condensation rate, and the subscript 1 denotes
liquid. Conservation of vapour mass is

(pyuy), = —T, (2.1.3)
where subscript v now denotes vapour. Conservation of energy is given by
0= (KT.). + hypl, (2.1.4)

where K is the effective thermal conductivity of the liquid—vapour saturated porous medium, and /., is the
specific heat of vaporization of water.
The Darcy velocities u;, u, are given as follows:
KKy

m (). + pi8); (2.1.5)

I 4 opg). (2.1.6)

uy = —

Uy, =
v

Here, « is the permeability of the porous medium, p; is the liquid pressure, p is the vapour pressure, and g is the

acceleration due to gravity. The relative permeabilities of liquid and vapour, respectively, are given by

Table 1

Constants for Udell problem

Symbol Interpretation Typical value Units (SI)
¢ Porosity 0.38 -

K Permeability 6.4 x 10712 m?>

0 Liquid density 10° kg/m?
[ Specific heat of vapor 10° J/kg K
a Specific heat of liquid water 41-43x10° J/kgK
Uy Viscosity of water vapour 22%x107° kg/m's
n Viscosity of liquid water 25%x 107 kg/m s
K, Thermal conductivity of vapor saturated medium 1.0 W/m K
pc Mass averaged density-heat capacity 10° J/K m?
Nyap Latent heat (water liquid—vapor) 2.5 % 10° J/kg

o Capillary pressure scaling 1.7642 x 10* Pa

R Universal gas constant 8.31 J/mol K
M Molar mass of water 18 x 1073 kg/mol
a Characteristic vapour pressure 0.19743 Pa

b Characteristic temperature scaling 0.03525 K™!

q Heat flux ~10° W/m?
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Ky =5, (2.1.7)
K = (1—5)°. (2.1.8)

The vapour in the two-phase region is fully saturated, and the temperature and saturation pressure, pga,
approximately obey the exponential relation:

p :psat(T) = aehT7 (219)

for constants @ and b. Next, the capillary pressure, p., is defined as the difference between the vapour and li-
quid pressures,

Pe=DP— D (2.1.10)
Now, p, = p.(s), the so-called Leverett function [13], and we take
Pe(s) = 8J(s), (2.1.11)

where J(s) is given by

J(s) = 1.417(1 —s) — 2.120(1 — 5)* + 1.263(1 — s)°, (2.1.12)

1
and 6 = a(%)z, where ¢ is the vapour-liquid interfacial tension, and ¢ is the porosity of the porous medium.

Finally, in the two-phase zone (and indeed throughout the entire system), we assume that the water vapour
obeys the ideal gas law, namely

R
p=1ipT, (2.1.13)

where R and M are the universal gas constant and the molar mass of water, respectively. The work presented
by Bridge et al. [6] assumes a constant vapour density, but we wish to include compressibility due to thermal
effects here. In summary, the two-phase zone conservation equations (2.1.2)—(2.1.4), together with all the con-
stitutive relations and empirical laws, form a system in three unknowns s, 7 and I". Furthermore, we can elim-
inate the condensation rate I' by summing (2.1.2) and (2.1.3), arriving at the system:

(250" = 806+ i) + 2T (1= (), 4 (7)) =0, .114)
(f(TZ + % (1 —5)*((ae’"). + pV(T)g)> =0, (2.1.15)
together with
Ma) eT
p.(T) = (T) - (2.1.16)

Egs. (2.1.14) and (2.1.15), form a coupled, second-order, nonlinear system for the two-phase zone variables s
and 7, in the region 0 < z < L. The system clearly has a singularity and degeneracy at s = 0. In the case of
constant vapour density, Bridge [4] shows that s = O(L — z)l/ *asz — L, and as such, the degenerate diffusion
type term requires careful treatment when constructing a numerical solution.

The vapour-only zone L < z < D is more simple. Conservation of mass reads

(pyuy), =0, (2.1.17)
while conservation of energy reads
0="7., (2.1.18)

since there is no phase change in the vapour-only region.
Now we examine the boundary and interface conditions required to close the model problem. At z = D, we
take
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T=T, (2.1.19)

uy, = 0. (2.1.20)
Now, at the free interface, we have the following five conditions:

s=0, (2.1.21)

71" =0, (2.1.22)

pS =0, (2.1.23)

(pun + py)” = (pyuy)", (2.1.24)

(KT = huappouy)” = (KT)". (2.1.25)
At the boundary z = 0, we have

T =Ty, (2.1.26)

oy + pyuy, = 0. (2.1.27)
In order to find a unique solution, we add the integral constraint

L D
/0 (sp, + (1 — 5)p,)dz + /L podz =W, (2.1.28)

where W is the fixed total water mass per cross sectional area of the porous pack.

2.2. Numerical method and results

The numerical solution method described in [6] is based on one-dimensional integration, reducing the
boundary value problems to coupled ordinary differential equations for saturation and temperature in the
two-phase region, and temperature and pressure in the vapour region. These ODE’s are solved numerically
using standard Runge-Kutta time-stepping, and a quasi-Newton method iterates on the heat flux through
the porous layer in order to satisfy the global constraint (2.1.28). Here, we extend this method to generate
steady-state solutions, allowing for variations in vapour density, according to the ideal gas law. In Fig. 2,
we show profiles of saturation and temperature throughout a porous pack of length D = 0.254 m, for typical
values of temperature and heat flux, and for the data given in Table 1. The interface L = 0.15 is clear, as are
the derivative discontinuities and the singular saturation gradient.

a T1=513.3, T0=360, q=1500, s0=0.5, L=0.15
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Fig. 2. Steady-state, one-dimensional profiles.
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3. The M2 mixture method for the transient Udell problem

In this section, we describe the time-dependent extension of the steady, one-dimensional phase-change
problem presented in the previous section. We carefully derive the conditions on the moving interface, and
show that these will be difficult to implement in disjoint-domain numerical solution methods which involve
front tracking. Clearly, front-capturing methods appeal for this type of problem. We shall describe a reformu-
lation of the problem over a fixed domain, in which the interface conditions are not explicitly imposed. This
formulation is similar to the mixture formulation presented by Wang and Beckermann [23], who implement a
numerical solution method for the case of an isothermal two-phase region. We describe the finite volume solu-
tion of the nonisothermal mixture problem.

3.1. Mathematical formulation of the model problem

Here, we present a model based on the time-dependent extensions to the steady-state conservation equa-
tions (2.1.2)—(2.1.4) and (2.1.17) and (2.1.18). Firstly, we consider the two-phase zone 0 < z < L(¢), where
the interface location is now a function of time. In this region, we have conservation of liquid mass. The mass
(per unit volume) of liquid in a control volume is ¢p;s, where ¢ is the porosity of the medium, p; is the liquid
density, and s is the saturation, as before. Then, conservation of liquid mass is given by

(ppis), + (), =T, (3.1.1)

where as before, u represents the Darcy velocity, and I' is the condensation rate. Similarly, conservation of
mass for the vapour phase is given by

(Poy(1 =5)), + (pyuy). = —T. (3.1.2)
The energy equation is now
(pe)T, = KT.. + hyopT, (3.1.3)

with a mass averaged product of density and heat capacity appearing. We assume here that the dominant den-
sity—heat capacity product is that of the porous medium, such that we can neglect variations in this quantity
with saturation. Certainly, this will be true for small values of saturation near the interface.

As in the steady-state problem, we can eliminate the condensation rate between the three conservation
equations to give conservation of mass as

(prs + py(1 = 5)), + (pp + pouty). = 0, (3.1.4)
and
(PE) T, = KToz = huap (9, (1 = 5)), + (pywy).)- (3.L5)

Again, we have a coupled system for the two unknowns s and 7 in the two-phase zone 0 < z < L(z).
In the vapour-only region L(¢) < z < D, there is no condensation, and conservation of mass gives

(dpy), + (pyu), =0, (3.1.6)
and conservation of energy is given by the heat equation with no source term:

We now have parabolic systems in two unknowns on either side of the moving interface z = L(¢), and, as such,
we require five conditions to be specified on the interface. The first three conditions are that saturation is zero,
the temperature is continuous, and the vapour pressure is continuous, giving the conditions

s=0, (3.1.8)
11" =0, (3.1.9)
p- =0, (3.1.10)
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which are exactly the same as conditions (2.1.21)—(2.1.23). The two remaining conditions again come from
conservation of mass and energy across the interface. These conditions require careful consideration of the
effect of the nonzero velocity of the interface, and we derive these conditions in the following subsection.

3.2. Modified Stefan conditions at the interface z = L(t)

The well-known Stefan condition describes conservation of energy across a freezing/melting interface mov-
ing through a body of water, say, separating regions of liquid and solid. Crank [7] presents a derivation of this
condition. The major assumptions which are made are that the water density is the same in either phase, and
that the water in each phase is stationary. Clearly, the Stefan condition must be modified for problems in
which there is an interface between liquid and vapour phases, where the fluid on either side of the interface
may be moving, and in cases where additional heat sources or sinks exist. With this in mind, we now find con-
ditions for mass and energy conservation across the interface, in terms of the interface velocity L(7).

Firstly, we consider conservation of mass across a general moving interface which separates two fluids, pos-
sibly different phases, which may have different densities and velocities. The argument is presented for a one-
dimensional problem, which is shown in Fig. 3. The fluid to the left of the interface has density p;, and is mov-
ing with velocity u;, while the fluid to the right of the interface has density py;, and is moving with velocity uy.
Suppose that the interface moves a distance 6z in short time 67, and that it moves with velocity L(t). Mass
conservation requires that the difference between the mass in the control volume [L(¢), L(¢) + 8z] over the time
interval [¢,¢+ 6] is due to the net mass flux into the control volume during that interval. For the problem
shown in Fig. 3, this gives

(p1 — pu)dz = (pyur — pyun)dt.
Taking the limit as 8¢ — 0, we arrive at a condition on the velocity of the interface, that is

(pr = pu)L(1) = pyuy — pyan- (3.2.1)
Further, in the case of flow through a porous medium which has porosity ¢, the interface velocity will be given
by

¢(p1 — pu)L(t) = pyur — pyyuan, (3.2.2)

where u; and uy; are now understood to be the Darcy velocities. Now, for the Udell phase-change problem,

suppose we take region I to be the two-phase region, and region II to be the vapour-only region. The condition

(3.2.2) holds, but we must consider mixture quantities in region I. That is, we consider quantities associated

with the mixture of liquid and vapour in the two-phase region. Let us define
p1 = ps+ p,(1 —s), the mixture density,

323
pruy = py + puy, the mixture mass flux. ( )

Then Eq. (3.2.2) gives
D ((prs + p,(1 = 5)); = (p))L(1) = (pyn + pywy) | = (pyity)yy-

6z, Ot
>
L(t)

z
fluid density pr fluid density prp
velocity ur velocity ugr

z = L(t)

Fig. 3. Mass conservation at the moving interface.
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Now, in view of the continuity of temperature (3.1.9) and of vapour pressure (3.1.10), we have that
(pv)l - (pv)ll = 0, and hence

$((pr = p)SIL(t) = (et + pyns); = (pyts )y (3.24)
To explicitly find the interface velocity, we must be careful. Specifically, the saturation condition at the inter-
face (3.1.8) is s =0 at z = L™. The velocity L(¢) must be considered as a limit of an indeterminate form. In
particular, the velocity is explicitly given by

L(l _ 11m7 (plul + pvuv)l — (pvuV)H. (325)
2=L(1) (1 = pu)rs

We note that such an indeterminate form for the velocity of a moving interface, resulting from a mass con-
servation argument, also arises when considering the porous medium equation. A common feature here is
the degeneracy as s — 0.

Now, for the Udell phase-change problem, we also require an energy balance across the moving interface,
which we will also see to be a limit of an indeterminate form. The argument we present here is an extension of
Crank’s [7] derivation of the Stefan condition in one dimension. Our problem includes an extra term due to
motion and phase change in the two-phase region, and we refer to the energy balance as a Modified Stefan
Condition. Consider the problem shown in Fig. 4. The interface between the two-phase region and the
vapour-only region in the Udell problem moves a small distance 8z in the small time interval &z. The heat
which flows into the control volume during the time interval is

~ 0T
<K_) 5,
oz

while the heat which flows out of the control volume during the time interval is

~ 0T
<K_)5L
0z ),

Now, the heat required to evaporate the liquid which moves up to the interface is
(hvapplul)St'

These three quantities are exactly the same as for the steady-state problem. We now consider the extra heat
released or required when the interface moves.

First consider the case 8z, L > 0. The additional mass which appears in the two-phase zone after the inter-
face has moved is ¢sp,0z. This must be exactly the amount of mass from region II which has condensed, and
the heat released upon condensation is then

hvap ¢Sp[82.

Given these four terms, we see that the energy balance across the interface is given by

T 5z, 6t
1(“0 ion I%
vapour
U
region I .
(two-phase) L(t)
z
z = L(t)

Fig. 4. Temperature profile and the moving interface.
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_or™
{K a—} Ot + Nyap Psp 0z = hyyppi10t.
Z1 1

Now, we take the limit as &z, ¢ — 0 to give
. _oT 11
hvap$spIL(t) = hvappiin — | K | . (3.2.6)
Z 11
To find L(¢), we note that s — 0" as z — L(r)”, and evaluate the limit
11

e (3.2.7)

hvapplu] — |:i(\v %:|
L(t) = lim
( ) z—L(t)” hvap¢5p1

Now, if we repeat this argument for the case 8z, L < 0, we get exactly the same condition. Notice that, if we
take (3.2.7) as the indeterminate modified Stefan condition which determines the interface velocity, then the
mass balance (3.2.5) becomes

(o — pv)l{hvap(plul) - [f( i—T} = }

1

(pi + pyity); — (pyity)y = , asz— L. (3.2.8)

hvappl

We note here that the indeterminate modified Stefan conditions (3.2.5) and (3.2.7) can be thought of as lim-
iting cases of the Rankine-Hugoniot conditions for our system (see, for example [1]), but we include the care-
ful derivation here.

3.3. Model summary

In summary, we have a two-phase region 0 < z < L(¢), in which

P(pis + py (1 —5)), + (pun + pouy), = 0, (3.3.1)
and

(PE)T, = KT= = huap ((p, (1= 9)), + (pv).)- (33.2)
The vapour-only region L(¢) < z < D has

(6p.), + (pyne), = 0, (3.33)
and

(pe)T, = KT... (3.3.4)
At the moving interface z = L(¢), the five conditions are

s =0, (3.3.5)

(7] =0, (3.3.6)

[P =0, (3.3.7)

o((p — pv)S)IL(t) = (o + pyity); = (pytty)yys (3.38)

. _or™
ToapPSPLL(t) = hyappitty — [K E]I . (3.3.9)

At the upper boundary z = D, we impose a temperature 7 = 7, and have no mass flux, so that u, = 0. At the
lower boundary z = 0, we impose a temperature 7 = To(< T), and have no mass flux, so that p;u + p,u, = 0.
Finally, we give initial profiles of saturation, temperature and pressure throughout the entire system at time
t=0.
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3.4. Fixed domain, mixture formulation

Any numerical method which is based on solutions in the disjoint domains 0 <z < L(¢#) and
L(#) < z < D will require an implementation of the interface conditions. A natural approach to take is that
of front tracking, which requires that the interface velocity be imposed explicitly. Suppose we were to take
the interface condition (3.3.8) as the condition which defines the velocity L(f). Any explicit implementation
of this will require evaluation of the indeterminate form given in (3.2.5). Thus, any front-tracking scheme
requires not only the explicit computation of interface location at each time step, but an accurate numer-
ical evaluation of this limit. Furthermore, extension of a front-tracking scheme to higher dimensions
would also require consideration of the interface geometry, and solutions to problems on irregular
domains.

Clearly, front tracking is not feasible for this model problem. An alternative is to reformulate the problem
over the fixed domain 0 < z < D, thereby avoiding the need for explicit consideration of the complex interface
physics. The interface location can be recovered, a posteriori, from the solution of the transient, fixed-domain
problem. Such an approach is referred to as a front-capturing method. Here, we present a reformulation based
on the mixture model described by Wang and Beckermann [23].

The reformulation is in terms of a density over the entire pack, rather than saturation in just the two-phase
zone. The main point is that if we consider the water anywhere in the porous pack to be a mixture of vapour
and liquid, then the density of this mixture must be continuous, even as we cross the interface. Suppose we
define the mixture density p by

p=ps+p,(l—s). (3.4.1)
Then Egs. (3.3.1) and (3.3.2) reduce to the system
= —(pu1 + pytiy),
¢ﬁ (pa =+ o) . (3.4.2)
(pc)T, =KT,. — hvap((¢pv(1 - S))r + (quV)z>

Now, the variables u,, u, p, are all functions of s and 7, and in particular

_ Tk N3 ap,
ty = (1—s) (az +pvg>, (3.4.3)
—K 5(0
u=—=s"{=(p, —3J(s)) + pg |, (34.4)
I 0z
and
J(s) = 1.417(1 — 5) — 2.120(1 — 5)* + 1.263(1 — s)°, (3.4.5)

where p, is the vapour pressure. So if p,, p,,s can be found as functions of p and 7, then (3.4.2) is a system in
the two dependent variables p and 7. Furthermore, given that p is the density of the liquid—vapour mixture,
the system (3.4.2) is valid over the entire porous pack, rather than just the two-phase zone. Thus, we seek solu-
tions to (3.4.2), from which we can recover the position of the interface between the two-phase zone and the
vapour-only zone.

Now that we are considering a system valid over the entire domain, we can not take the vapour pressure to
be equal to the saturation pressure. Rather, the vapour pressure at a point will be equal to either the saturation
pressure (in which case, the point is in the two-phase zone) or the pressure given by the ideal gas law for the
vapour-only zone. Given values of p and 7, a comparison of these two pressures, namely

. PRT
psat(T):aebT7 p (va):77

determines whether or not the vapour is fully saturated, and hence the values of p,, p, and s. If p* < pg,,, then
the vapour is undersaturated, so must be in the vapour-only region. In this case, the vapour pressure p = p*. If
Deat < P¥, then the vapour is fully saturated, and hence p = p,,,. We see that Eqgs. (3.4.2), together with the alge-
braic constraint
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. RT
p, = min <psat(T),p7), (3.4.6)

form a differential-algebraic system for the two variables p, T, which is valid over the entire domain. The map
(3.4.6) is the crux of our reformulation, and we name this the M2-map.

3.5. Numerical method and results

Egs. (3.4.1)—(3.4.6) give a coupled parabolic system on the domain 0 < z < D. Now we consider the discret-
ization of the problem, written as

0 0
0
peT, + wi(p, >Q(p, ) (3.52)
where the fluxes ¢, Q are given by
0 0 . 0
q vaa_ A(pv ) gA(p7 )+f3(p7T)_gB(paT) ) (353)
0z d) 0z
0\ = hvapK 0
Q(paTa§> _KT2+ 1, fC(va)agC(paT)v (354)
where
Pr 3 Py 3
T +=(1—-3s),
Salp,T) m HV( )
galp, T) =
,01
0,
f(p, T) = m

g0, T) = (s),
fC(pv T) = pv(l - S)37
gc(p,T) = p,
and the function w is given by
W(p, T) = huapebp, (1 = 5). (3.5.5)

The time-dependent terms in the energy equation have been grouped together, leaving the time derivative of an
enthalpy-type quantity. Also, in keeping with formulations of degenerate diffusion problems for numerical
computation [10], we have rewritten the degenerate liquid velocity as

K
w == (P + 0 (9)).), (3.56)
1
where the function y is given by
Y(s) = —/. EJ'(6)dé = 0.24155* — 0.6676s° + 0.63155°. (3.5.7)

This change-of-variables idea is used in preference to regularisations of the type x, = s + #, such as those
seen in the fuel cell literature [14,15]. The numerical convenience offered by such regularisations is due to the
fact that they smear out the sharp interface. The interface in the continuous problem is smeared in space over a
width @(1), introducing errors before the discretization. The effect of such smearing is demonstrated for a sim-
ple scalar problem in Appendix A.
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Also, we have the boundary conditions
qlz:O = qbot(t)7q|z:D = Qtop(t)a T|z:0 = Thot(1), T‘Z:D = TtOP(t)' (3.5.8)

For the closed sand pack, the boundary fluxes are zero, and we will take the boundary temperatures to be con-
stant in time. Now we wish to implement a numerical scheme for the solution of the system (3.5.1)—(3.5.8).
Two implementation options are available for explicit time-stepping. One option is to use a quasi-enthalpy
method. The density p may be explicitly updated from the mass Eq. (3.5.1). Then the enthalpy E, defined by

E(p,T) =pcT +w(p,T), (3.5.9)

may be explicitly updated from the energy Eq. (3.5.2). The temperature 7" must then be recovered from the
enthalpy by way of a nonlinear solver. A second option is to form a mass matrix, and write the system
(3.4.2) as

(6111 Cllz) <P> _ —(pun + pyuy), (3.5.10)
any an T t KTzz - hvap(pvuv)z ’ B
where

apn = (f), ap; =0,

together with

ap, Os
ay = hvap¢((1 —S) 670 - pv$)7

and

op Os
=pc+ hy 1- Y po— .
anp = pc + apﬁb(( S) oT Py aT)
Either of these two explicit methods requires the computation of derivatives of all quantities with respect to
the primary variables p, T, as would an implicit method. Given the inherent stiffness in the problem, here we
shall use a fully implicit scheme. Now we discretize the parabolic problem (3.5.1)—(3.5.8) by finite volumes, in
order to conserve the total mass, given by

/0 ’ p(z,t)dz,

in a discrete sense.

Given that mass flux is given at the boundaries (3.5.8), we develop a scheme which computes a discrete
approximation to the solution of (3.5.1) and (3.5.2) with mass fluxes on a grid which coincides with the bound-
ary points, and density p on the corresponding staggered grid. That is, we use a finite volume scheme for
updating p;, which is the cell average density for cell j. Also, we use cell averaged temperatures. Consider
Fig. 5. Let 7; and p; be the average values of temperature, 7, and density, p respectively, over grid cell ;.
We introduce vectors T and R to represent the interpolated values of temperature 7" and density p falling
on the grid. So we have

ghost cell ghost cell
Py g | Py Ty | | | Py g | P T | Pir1r Tjeq | | PN+ Tt IpN+2’ Tne2
X X
I | I I | | I I |
Ry Ty Ry Ty RH’ ij1 Rj’ T| Ry Tt
Q. q Qy q, Q_.q Qj' 9 Quipr Oneg

Fig. 5. Grid and staggered grid.
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Ty = tp =250 for j= 1, N+ 1,
35.11)
Y (
R/:pj+1/2:% fOrj:17...,N+1.

Then a fully implicit (Backward Euler), conservative, finite volume scheme for the mass Eq. (3.5.1) is given by
the discretization

«’;+l_p;’ 1 n+1 .
Fr=re (g =g, )" =0, =2 N (3.5.12)

where the discrete fluxes are given by

q; = % ( (R, T)) (gA(p,»H, TM})Z —galpy, Tf)) +/5(R;, T)) (gB(PmaTm})l —gs(p;, Tj)>>7

j=1,... ,N+1, (3.5.13)

Next, we discretize the energy Eq. (3.5.2) in a similar manner. We have

G — el T W) — wle )
=

k k

1 ) ‘
— (-0 =0, j=2 N4, (3.5.14)

where

Nyapk

ST — T
Q,-ZKL-i-

h gc(pjp1s Tis1) _gc(pja‘fj)>7 j=1,... ,N+1. (3.5.15)

fC(R,-,T,-)( 7

Here, k, h are the chosen time step and grid spacing, and superscripts denote the time level. The boundary
conditions give

v

Fi =q; — ¢t =0,
G =T~ Toa =0,
Fyp=qy, ~ Giop =0,
GN+2:TN+1 _Ttop:()-

(3.5.16)

Note that we cannot find the ghost values p;, py_, explicitly in terms of interior cell values, so we just include
them in the system to be solved. That is, we have 2(N + 2) nonlinear equations

F']:O7 GJZO,]:1,7N+2,

for the unknowns p;,7;,j=1,...,N + 2. We use a Newton method with analytical Jacobian. An alternative
method described by Knoll et al. [12] for scalar Stefan problems achieves Newton-like convergence without
explicitly forming the Jacobian. It is unclear as yet whether such an approach could be applied here. We re-
place the nonsmooth map (3.4.6) with the smoothed minimum

p= mins(psaﬂp*) = ﬁs(p* _psat)psat + (1 - ?Is(p* _psat))p*7 (3517)
where the smoothed Heaviside function is given by

~ 1 X

HE(X):E{I—&—tanh (:)}, (3.5.18)

for a smoothing radius ¢, and p* = £ pT'. In practice, the smoothing radius ¢ can be taken arbitrarily small, ie.
to machine precision. This replacement is thus merely a coding convenience used in order to avoid “if”” state-
ments; the singularity and degeneracy in the saturation equation are retained.

In Fig. 6, we show a typical result, starting from an initial uniform density, with no mass flux across the
boundaries. The initial temperature is uniform, and the system is subject to sudden heating up to a fixed tem-
perature at the upper boundary. A number of density, temperature and saturation profiles are shown, for
increasing time, and we note that the profiles shown approach the correct steady-state profiles. The transition
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Evolution to correct steady-state profiles, starting with uniform density and temperature
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Fig. 6. Evolution to correct steady state.

to an interface s = 0 is captured, and the interface between the two-phase and vapour regions is clearly moving
to the left. In Fig. 7, the interface position, L(¢) is plotted. The stepwise behaviour is due to the discretization,
and the fact that we take L(z) as the first grid point to the right of s = 0. Also, we plot L(¢) for three grid sizes:
N =20,40,80. Convergence to a base numerical solution is clear as the grid is refined. The question remains,
however, of whether the numerical method indeed computes the interface velocity accurately. This will be
addressed in the following section.

Fig. 8 shows the temperature history at a point. An initial increase in temperature is numerically the result of
the sudden-heating boundary condition. After this, the temperature history has a wavy, stepwise nature, in
common with the enthalpy-method solution of the Stefan problem [1]. For the Stefan problem, a control vol-
ume is held at the fixed phase-change temperature while the interface moves through it. Another way of saying
that is that the temperature remains fixed while the enthalpy in that control volume increases/decreases through
the latent heat jump. The staircasing then is a result of successive temperature relaxations. For our problem,
there is no jump in enthalpy. We believe that the staircasing here is due to liquid water movement occurring
on a much longer timescale than temperature change, so that when the interface initially enters a control vol-
ume, the temperature rapidly changes, then slowly relaxes as the cell accumulates water and the discrete satu-
ration profile steepens. Quantitative analysis of this staircasing phenomenon is suggested as future work.

For the results shown in Figs. 6-8, small time steps are initially required, in order for the Newton iteration
to converge to within the specified tolerance. In fact, initially, we use Forward Euler time-stepping to get past
the initial transients, and then employ the fully implicit scheme. However, the time step required for conver-
gence to within a fixed tolerance decreases as the saturation profile steepens before the interface moves by a
grid point. In Fig. 9, we demonstrate the stiffness in the problem. An experiment was performed using implicit

Moving interface location, with T0=360 T1=367.9727 W=13.8153 L=0.175
0.25 T T T T T

0.24}
0.23}

022}

)

021}

02t

0.19}

0.18}

0.5 1 15 2 25 3 35
time t (seconds) x 104

Fig. 7. Interface location L(¢), with grid refinement.
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Fig. 8. Temperature history at a point.

M2 interface evolution and timestep

timestep k
3

time t x10*

Fig. 9. Timestep and interface location.

time-stepping with adaptive time-step. Whenever the nonlinear solver is unable to converge to within the
required tolerance, the time-step is halved. The figure clearly shows the relationship between the time-step
and the interface advance.

4. Numerical convergence studies

Numerical experiments using our mixture-based capturing method for the time-dependent problem show
that initial distributions evolve to the correct steady-state solutions, as given by the method of Section 3.
We now examine the dynamics of the system to ensure that the method indeed captures the moving interface
accurately in space and time. Typically, the convergence of numerical methods for moving boundary problems
is demonstrated using initial and boundary data consistent with known similarity solutions. Similarity solu-
tions are available for the two-phase Stefan problem and the porous medium equation. In the literature, sim-
ilarity solutions have been found for reduced, scalar models of phase change in porous media (see, for
example, [26]). Here, we reduce our model problem only by simplifying the coefficients, but we retain the full,
nonlinear, vector problem, and construct a travelling wave solution.

4.1. The full Udell problem

Consider computations where the number of grid cells is N, and num is the number of time steps. We quan-
tify the errors by calculating numerically the norms of the errors made in the temperature 7, the mixture den-
sity p, and the interface location L. Specifically, we compute the time-averaged quantities defined by
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num
IE7]l, = MN Z Z |T(z),1a) = Texace (2, 1)

num N

HEPHI - num N Z Z |p Zj7 pexact(zﬁtn)‘a

with reference to exact solutions.

For the full system (3.3.1)—(3.3.9), exact analytical solutions are unavailable, and instead we take use a base
numerical solution using N = 320 and num = 25,600 as an exact solution. The initial condition for our study is
a two-phase/vapour system with an interface L ~ 0.2. In Table 2, we show the results of a numerical conver-
gence study, keeping u = k/h* fixed. As the grid spacing is halved, the temperature and density errors decrease
by factors of around 2.2 and 2.5, respectively. While second-order accuracy in space is not achieved, this is not
to be expected since lower order errors are introduced near the interface. However, convergence is clear at
around first-order, and compares well with enthalpy-method solution of the scalar Stefan problem, and Evje’s
method for the Porous Medium Equation, which are both also around first-order accurate. We note here that
fixing the grid spacing and varying the time step hardly effects the computed errors — the spatial error is dom-
inant. We will shortly present a temporal convergence study.

b

4.2. A reduced model problem

While the base numerical solutions for the full problem allow a convergence study, we now seek analytical
solutions to a reduced problem. These new solutions are constructed for use in further convergence studies
presented here, but also with a view to more analytical questions to be answered in future work.

Let us consider a model problem with reduced Darcy velocities, and the majority of coefficients equal to
one. Specifically, we consider

liquid flux = —p;s*(p. +5.), and vapour flux = —p p_,

where we have simplified the Leverett function and the relative permeability, and have taken absolute perme-
ability and viscosity to be unity. We note that removing the relative permeability of vapour, namely (1 — s)3,
will not affect the singularity structure at s =0, but it will allow for solutions with saturation s > 1. In this
sense, the solutions cease to be physically meaningful. Conservation of liquid mass reads

(s), — (8™ (s +p.)), =T (4.2.1)
Conservation of vapour mass reads
(p), = (pup.), = T, (4.2.2)

where the weighting (1 — s) has been taken as 1. Again, this will not affect the structure near s = 0. Conser-
vation of energy is

T,=T.+1T. (4.2.3)
In the vapour region, we have
I'=0, p=p,T (ideal gas), p < p,(T) (undersaturated), s=0,

leaving a problem for p,, T (or p,T). In the two-phase region, we have

Table 2

Errors for full Udell model

N num lE7]l, fac 1E, I, fac
20 100 41712 E -2 80711 E—1

40 400 1.9847E -2 2.10 3.0720E — 1 2.63
80 1600 89544 E — 3 2.22 12131 E—-1 2.53

Base solution has N = 320, with £ = 0.25, num = 25, 600.
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p = p,T (ideal gas), p=p,(T) (fully saturated),

leaving a problem for s, T and I'. At the interface z = L(¢), we have five conditions, corresponding to (3.3.5)-
(3.3.9):

s =0, (4.2.4)
(7]t =0, (4.2.5)
[p]” =0, (4.2.6)
(Mass) pis L(t) = —(ps’(s: + p.) + pup.) + (p(pT).)", (4.2.7)
(Energy) pis™ L(t) = (=pis*(s: +p.)) —[T:)". (4.2.8)

Note that, in view of the ideal gas law p = p, T, conditions (4.2.5) and (4.2.6) further imply continuity of va-
pour density

[0,]7 =0. (4.2.9)
Also, for convenience later, we note that (4.2.7) and (4.2.8) give
0=—(pp.) +(p(pT).)" +[T.]". (4.2.10)

Then, the five conditions (4.2.4), (4.2.5), (4.2.9), (4.2.8) and (4.2.10) can be used to solve the problem. For the
fixed-domain problem on 0 < z < D, first we define the mixture density

p=ps+p,, (4.2.11)
and then use the “M2-map”

p=min(pT, py(T)),

_P
Pv=" (4.2.12)
_ P — Py
S_ b
P1

leaving the coupled system
Pr— (plSS(SZ +pz) + pvpz)z = Oa
(T+py) =Tz + (pp.)..

In [5], po(T) = T, aT + B,aT + BT? are given as three saturation pressure functions of interest which yield
semi-analytical travelling wave solutions.

(4.2.13)

4.2.1. Travelling wave solution for case py (T) = oT

Suppose the saturation pressure is a linear function of temperature, such that p, (T) = «T. Then p, = o in
the two-phase region. Also suppose that we have an infinite porous medium —oo < z < oo, with far-field tem-
peratures not yet specified. At time ¢, let there be an interface at z = ¢t separating a two-phase region z < ct,
and a vapour-only region z > ct. So the interface initially is at z = 0, that is, L(0) = 0, and we seek travelling
wave solutions with speed ¢. In the two-phase zone, seek solutions

s(z, 1) = G(S), T(z1) =Fi(d), (4.2.14)
and, in the vapour zone, seek solutions

p(z,1) =R(E), T(z,1) =Fx(S), (4.2.15)
where

P (4.2.16)

With ¢ > 0 we have wavefronts moving to the right with speed ¢. As shown in [5], we can construct the fol-
lowing travelling wave solution.
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Fy(E) =4, + Bie 7, (4.2.17)
Fy(&) = 4y + Bye™, (4.2.18)
and G(&) = w'/4(¢), where w solves
1
Zw' =— <cw1/4 + a(w3/4 + 1>F’1 +A3>, <0, w0)=0, (4.2.19)
Pi
and finally, R(&) solves
1
R =- c+RF)R+A44), ¢=0, R0)=o. 4.2.20
The constants 4,, A3, A4 are given by
A2 :A1+B1—Bz, A?:pE(Bl —Bz), A4:C(31—BQ—O!). (4221)
1

We have a three-parameter family of solutions to the model Udell problem. That is, a family of solutions
parameterized by A4, By, B,. These can be carefully chosen in order to have temperature increasing in both re-
gions, and the density decreasing to the right of the interface. A typical result is shown in Fig. 10. Now we are
in a position to compare numerical results with the travelling wave solution.

Note: With By < 0 to ensure that F; is increasing, we have F; — —oo as £ — —oo. Clearly, the temperature
in the two-phase region will become negative for some value of ¢, and remain negative as ¢ increases. Our code
takes the M2 comparison as p, = min(p, «). This gets around the fact that the vapour pressure becomes neg-
ative as temperature does. So, while comparison with this travelling wave solution serves the purpose of eval-
uating the performance of the numerical method, we note that the travelling wave solutions to this reduced
problem only represent anything close to the physical problem up to the time at which 7 and p become neg-
ative. The solution structure of the physical problem at the interface is retained, though.

4.3. Numerical results, convergence study
In order to evaluate the performance of the M2 capturing method applied to the reduced Udell problem, we
simply give our code initial conditions and boundary conditions consistent with the exact travelling wave solu-

tion given by (4.2.17)—(4.2.21), for the chosen values of the parameters 4, By, B,. In Fig. 11, we show com-
puted interface location, noting close agreement with the exact solutions, and apparent convergence with

Travelling wave profiles for «=0.7 pl=5 A1=’I B1=0.5 B2=—0.83557
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L L L
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"temperature” F(&)

"saturation” G(&)
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&=z—ct

Fig. 10. Travelling wave profiles for mixture density, temperature and saturation.
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Interface position for reduced Udell problem with travelling wave solutions
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Fig. 11. Computed and exact interface location for the reduced travelling wave problem.

grid refinement. Now we will demonstrate the convergence of our schemes numerically. Although we have a
second-order scheme and an exact solution, we do not expect to be able to show second-order accuracy.
Firstly, we need an accurate measure of interface location. Methods are available for the enthalpy solution
of the Stefan problem [22], but are based on a known phase-change temperature, and will not be applicable
here. In the results shown, the interface location is simply the next grid point to the right of s=0. An
improved interface location would require an extrapolation from the steepening saturation profile. This is
not straightforward, and has not been achieved yet.

In Tables 3 and 4, we show the results of a numerical convergence study for the finite volume, capturing
method, applied to the reduced Udell problem.

We have exact solutions given by the travelling waves, with speeds ¢ = 1 and 4. In both cases, we use impli-
cit time-stepping, with u = k/h* fixed. We now include the error in interface location L. Specifically, we
compute

num

1
1EL]l, = um ; |L(t,) — cta].
Again, we see convergence at first-order. We note here that, when computing solutions to the two-phase Ste-
fan problem with travelling wave solutions, using the enthalpy method described in [1], we found the temper-
ature error to decrease by a factor of around 2.3 as the grid spacing is halved. Also, applying the discretization
used by Evje et al., applied to the one-dimensional porous medium equation u, = (u’u,),, we found the error in

Table 3
Errors for reduced Udell problem, implicit (BE) time-stepping with = 0.2, ¢ =2
N num IlE7]l, Factor 1E, Factor IELIl; Factor
20 50 1.9986 E — 3 8.1047E —2 1.3620 E — 2
40 200 7.0790 E — 4 2.82 3.3881 E—2 2.39 7.3350 E — 3 1.91
80 800 25842 E — 4 2.74 1.4097 E — 2 2.40 3.8450 E — 3 1.90
160 3200 97712 E -5 2.64 5.8601 E — 3 2.41 20283 E -3 1.89
320 12,800 3.8206 E -5 2.56 24351 E-3 2.41 1.0625 E — 3 1.91
Table 4
Errors for reduced Udell problem, implicit (BE) time-stepping with u = 0.2, ¢ =1
N num lE7|I; Factor IE, 1l Factor 1EL]l, Factor
20 50 1.1646 E — 3 5.9305E -2 1.5220E -2
40 200 3.6319E — 4 3.21 2.6721 E -2 222 7.0375E -3 2.16
80 800 1.2909 E — 4 2.81 1.1080 E — 2 2.41 37072 E -3 1.90
160 3200 45586 E — 5 2.83 46023 E -3 2.41 1.9445E -3 1.91

320 12,800 1.6463 E — 5 2.71 1.9151 E-3 2.40 1.0119E -3 1.92
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Table 5

Errors for Reduced Udell model, travelling wave with ¢ = 2, varying time step

u(= k/h?) num £zl fac (AR fac
2 500 9.50E -6 1.06 E—-4

1 1000 451E—-6 2.11 502E-5 2.11
0.5 2000 201E-6 2.25 223E-5 2.25

Base solution has N = 200, with g = 0.1, num = 10, 000.

Table 6

Errors for PME, travelling wave with ¢ = 1, varying time step

w(=k/h?) num IEull; fac
0.2 1000 1.55SE-5

0.1 2000 736 E—6 2.11
0.05 4000 327E—-6 2.25

Base solution has N = 50, with x = 0.01, num = 20, 000.

u to decrease by a factor of 2.4 as the grid spacing is halved. Our capturing method for this coupled, vector,
nonlinear problem clearly gives convergence rates comparable with those for these scalar prototype problems.

4.4. Temporal convergence study

As noted earlier, the computed error is dominated by the spatial error. Now we specifically demonstrate
accuracy in time, by varying the time-step independently of the fixed grid size. The results shown are for
the reduced model, but we use a base numerical solution with a small time-step and grid size as the exact solu-
tion, so that we concentrate on the temporal error.

In Table 5, we show a convergence study for our M2 method applied to the reduced model problem, using a
travelling wave initial condition. The grid spacing is fixed as the time-step is refined. Clearly, we have first-
order accuracy in time. For comparison, a similar convergence study is shown in Table 6, for the scalar Porous
Medium Equation. Once again, the convergence rates for our vector problem compare very favourably with
those for the much simpler scalar problem.

To conclude, we have demonstrated accuracy in both space and time for our M2 method applied to the
coupled, vector Udell problem, with convergence rates comparable with those for capturing methods applied
to simple prototype problems. Also, we have constructed semi-analytical solutions to a model problem, for use
with further numerical and analytical studies.

5. Computations in higher dimensions

One of the distinct advantages of a fixed-domain, front-capturing method over front tracking is that exten-
sion to higher dimensions is much more straightforward. In this section, we return to the full mathematical
model for the physical problem, and present some computational results in two dimensions. In particular,
our point here is simply to demonstrate the robustness of our method, by choosing systems with irregular
interface geometries, and those which evolve through topological changes.

5.1. Mathematical model

If we generalize the governing equations (3.1.1)—(3.1.3) to higher dimensions, we have
(pps), + V- (pm) =T, (5.1.1)

where as before, u represents the Darcy velocity, and I is the condensation rate. Similarly, conservation of
mass for the vapour phase is given by
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((l)pv(l —S))t+V' (pvuv) =—T. (512>
The energy equation is now
(pe)T, =V - (KVT) + hypl, (5.1.3)
where the Darcy velocities are functions of the saturation and the vapour pressure, and are given by
u, = —@Vp, (5.1.4)
Hy
and
w=— "l’j"l (Vp — 8J'(5)Vs), (5.1.5)
1

where i is viscosity, x is the permeability of the medium, «,,, are the relative permeabilities, and J(s) is the
Leverett function.

For our sample 2D computations, on Q = (0, D) x (0, D), we take periodic conditions in the x-direction. At
the bottom boundary y = 0, take a given temperature, and no mass flux, so that

T =Ty(x,t), (pu+p,u)-n=0. (5.1.6)

At the top boundary y =1, we take a higher given temperature, and no mass flux, so that
T=T(x,8)(> To(x,2)), (pu+ p,u,)-n=0. (5.1.7)

Now, given that there is no mass flux across the boundary, our initial condition fixes the total water mass W.
Now, in order to compute solutions to this problem, we simply extend the finite volume scheme described in
Sections 3.4 and 3.5 to the two-dimensional problem.

5.2. Computational results

The first results we show use the steady-state results for the one-dimensional problem shown in Fig. 2. The
total water mass (per unit area) in the system is W = 35.7, and the interface is L = 0.15. Now, we consider the
two-dimensional, transient problem with uniform boundary temperatures at y =0, D corresponding to those
at z =20, D for the one-dimensional problem. Now we give an initial condition with a fixed water mass (per
unit length) of WD. Imposing no mass flux across the lower and upper boundaries, and giving periodic con-
ditions in x, we expect the solutions to evolve towards the one-dimensional, steady-state results shown.

In Fig. 12, we show temperature and mixture density plots at two times, for a two-dimensional initial con-
dition which has liquid water at a uniform saturation concentrated near the lower boundary in a block as
shown, and vapour in the block above it. The temperature is taken initially uniform, so that
T(x,y,0) = Tvor = 360, and then the system is subject to sudden heating at y = D. A fully implicit scheme
is used, with a 20 x 20 grid.

We note the evolution of the system towards the correct steady state. In Fig. 12, we can see that after a time
of about 20 min, the interface is approximately at y = 0.15. The influence of the initial condition is still appar-
ent, but the saturation and temperature plots have roughly the familiar shape of the steady-state one-dimen-
sional profiles.

In Fig. 13, we plot the liquid and vapour fluxes at early and long times, on a saturation contour plot. At
t = 16, the liquid fluxes are small everywhere except near the interface. At the later time, there is a larger liquid
flux at the lower boundary, where the vapour condenses, and then is driven upwards by the capillary pressure
gradient. The vapour flux in the vapour region is initially large, but decreases in time as a steady state is
approached. The one-dimensional steady-state solution has stationary vapour in the vapour region. As a
steady state is approached, the vapour flux becomes essentially one-dimensional.

In Fig. 14, we plot contours of saturation at increasing time, for an initial condition with a “blob” of two-
phase fluid at uniform saturation in the centre of the domain. Again, we have sudden heating at the top, closed
upper and lower boundaries, and periodic conditions in x. We see the two-phase region spreading, and migrat-
ing towards the lower boundary. There is initially a large downward vapour flux in the vapour region (outside
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Fig. 12. Mixture density and temperature plots — initial condition and long time.

the blob), and condensation occurs at the cold boundary y = 0. A second two-phase region thus appears near
the lower boundary, creating a second interface which is clearly visible at 1 = 189. Liquid accumulates in the
lower two-phase region, and the blob migrates downwards through the surrounding vapour region, until the
two separate two-phase regions coalesce, leaving just one interface once more. Our capturing method encoun-
ters no problems upon these topological changes. In this example, the total water mass in the system is equiv-

Saturation contours and liquid water flux at time t=16 Saturation contours and vapour water flux at time t=16
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Saturation contours and liquid water flux at time t=1115 Saturation contours and vapour water flux at time t=1115
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Fig. 13. Saturation contours with liquid and vapour fluxes.
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t=189 t=498

Fig. 14. Saturation contours for an initial “blob” of two-phase fluid in the centre of the domain.

alent to a one-dimensional steady-state solution with interface at L = 0.1. We see that, by time ¢ = 6709, we
have almost reached this one-dimensional steady state.

6. Conclusions and future work

In this paper, we have presented a numerical interface-capturing method for a model problem of time-
dependent two-phase flow with phase change in porous media. We have allowed for a nonisothermal
two-phase region, rather than making the popular assumption of an isothermal region. This will allow for
computations in particular settings where thermal effects are important, such as fuel cell electrodes.

One-dimensional, steady-state results have been generated by extending an existing method to allow for
compressible vapour. Our transient computations show convergence to the correct steady-state solutions,
and we observe this for both one-dimensional and two-dimensional initial conditions.

We have found similarity solutions to a model vector problem for phase change in porous media. The sin-
gularity, degeneracy and coupling in the mathematical model have been retained, and we have demonstrated
convergence of our numerical results to the exact travelling wave solutions, thus showing that the capturing
method recovers an interface moving at the correct velocity. To our knowledge, this is the first such conver-
gence study for a full, coupled model.

Future work will include applying this capturing method to physical and industrial problems of interest. In
particular, we will look at model problems of phase change in fuel cell electrodes and oil reservoirs. Also, we
will consider modified models of phase change which relax the saturation assumption which we have used in
this paper.
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Appendix A. The effect of a regularized “relative permeability” on the travelling wave solutions to the porous
medium equation

We consider the effect of the regularization parameter # on travelling wave solutions of the Porous Medium
Equation, when we replace the base equation

s = (57s.)., (A.0.1)
with the regularized problem
u, = (( +nu).. (A.0.2)

Here, n > 0 is some small computational parameter which smears out the interface.
Consider travelling wave solutions s(z, ¢) = S(&), u(z,t) = U(&), where & =z — ct, and c¢ is the wave speed.
Then we have

—cS' = (§°S'), (A.0.3)
and

—cU' = (U* +n)U")". (A.0.4)
Eq. (A.0.3) has interface-type solutions of the form

_ 1/3
s = (e <0, (A.0.5)
0 ¢ =0,
where the interface is at £ = 0. Consider travelling wave profiles on —D < ¢ < oo, with upstream fluxes equal:
3 _ Q3¢
(U, =8]_,,

and with U — 0 as ¢ — oco. Then U(¢&) satisfies
1
—cé = 3 U +nlogU — g log(3¢D), (A.0.6)

so the “interface” has been smeared over a region of width @(y), as shown in Fig. 15.
Now consider how the degree of smearing depends on 7. We subtract (A.0.3) from (A.0.4) and integrate
over (—D, c0), which gives

|U =S|, = 3¢72D)'"7y. (A.0.7)

Travelling wave regularized PME solutions

-08 -06 -04 -02 0 02 04 06 08
z

Fig. 15. Smearing of travelling wave solutions to the porous medium equation.
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